

WHAT IS CREEP?

Creep is defined as the tendency of a polymer to distort under external loads over time. It is important to note that application thickness has a significant impact on overall project cost and return to service time.

The time to complete a project has an impact on by-pass costs as well as the constituents served by the infrastructure being repaired. Both monetary and social costs are relevant to solutions selected to repair aging infrastructure.

SPRAYWALL

Short Term Flexural Modulus of Elasticity | **735,000 psi** Creep Reduction Factor | **28%** Long Term Flexural Modulus of Elasticity | **529,200 psi** Return to Service Time | **30-45 Minutes**

OBIC 5000

Short Term Flexural Modulus of Elasticity | **470,000 psi** Creep Reduction Factor| **50%** Long Term Flexural Modulus of Elasticity | **235,000 psi** Return to Service Time | **10-12 Hours**

RAVEN 405

Short Term Flexural Modulus of Elasticity | **700,000 psi** Creep Reduction Factor | **50%** Long Term Flexural Modulus of Elasticity | **350,000 psi** Return to Service Time | **5 Hours**

WARREN 301

Short Term Flexural Modulus of Elasticity | **500,000 psi** Creep Reduction Factor | **50%** Long Term Flexural Modulus of Elasticity | **250,000 psi** Return to Service Time | **2-8 Hours**

DEPTH OF WATER	SPRAYWALL	OBIC 5000	RAVEN 405	WARREN 301
5'	386 MILS	505 mils	443 MILS	495 MILS
10'	485 MILS	634 mils	558 MILS	621 MILS
15'	555 MILS	725 mils	636 MILS	710 MILS
20'	610 MILS	796 mils	699 MILS	780 MILS

Note: All calculations based on Long Term Flexural Modulus of Elasticity with a 48" diameter manhole.